DIII-D Research Plans M.R. Wade Office of Fusion Energy Science FY07 Budget Planning Meeting Washington, DC March 15-16, 2005 015-05/AMG/jy # DIII-D MISSION: TO ESTABLISH THE SCIENTIFIC BASIS FOR THE OPTIMIZATION OF THE TOKAMAK APPROACH TO FUSION ENERGY PRODUCTION ## **Program objectives:** - Advance the fundamental science understanding of fusion plasmas - Enable the success of ITER by providing solutions to key issues - Enrich the ITER physics program through development and characterization of advanced scenarios - Develop the physics basis for high performance, steady-state operation in ITER (and beyond) # DIII-D RESEARCH PROGRAM IS AIMED AT ENSURING THE SUCCESS OF ITER WHILE ADVANCING THE SCIENCE AND INTEGRATION OF ADVANCED SCENARIOS - DIII–D is addressing scientific issues critical to the ITER mission. Among these are: - Sufficient pedestal size with tolerable ELMs - Avoidance or stabilization of n=1 neoclassical tearing modes - Mitigation of disruptions - Tritium retention in plasma facing components - Advanced scenario development on DIII–D suggests that an enhanced physics program should be possible on ITER - Advanced inductive (Q > 40) \Rightarrow high Q burning plasma physics - Hybrid (Q ~ 10 for >1 hr) ⇒ materials testing - Fully noninductive (Q ~ 5) ⇒ steady-state operation - Key to the development of these solutions and scenarios is a fundamental understanding of the basic processes that have the largest impact - Electron thermal transport - Energy and particle flow patterns in the edge - Alfvén eigenmode instabilities # THE VERSATILITY OF THE DIII—D FACILITY PROVIDES AN IDEAL PLATFORM FOR ADDRESSING A WIDE RANGE OF KEY FUSION SCIENCE ISSUES ### Machine flexibility - Plasma shaping - Co-, counter-, and balanced NBI - Complementary set of heating and current drive systems - Density control in a variety of plasma configurations - Non-axisymmetric coil set ### Diagnostics - Full suite of profile diagnostics (core, edge, and divertor) - Expanding set of fluctuation diagnostics (core and edge) - Complementary set of analysis codes ### Operating scenarios - Fully noninductive, $\beta_N \sim 4$ (Advanced Tokamak) - Stationary, high performance (hybrid and advanced inductive) - Conventional H–mode (ITER baseline scenario) - Other: QH-mode, QDB, VH-mode, High ℓ_i, L-mode, . . . # DIII-D VERSATILITY PROMOTES COMPARATIVE STUDIES WITH FUSION FACILITIES WORLDWIDE #### **ASDEX** - Hybrid - QH-mode - Pedestal - Modulated transport - NTM **Alcator C-Mod** - Pedestal - Momentum transport - Edge/divertor #### **NSTX** #### JT-60U - Advanced Tokamak - Hybrid - QH-mode - Current hole **JET** - Transport - RWM - Current hole - QH-mode - Hybrid - NTM - Fast ion instabilities - Pedestal - Transport - Plasma control - RWM # SCIENTIFIC PERSONNEL EXCHANGES ENHANCE COLLABORATIONS AND JOINT EXPERIMENTS | | 2004 -2005 | | |--|--|---| | to | DIII–D | from DIII–D | | Current hole experiments
E. Solano (CIEMAT) | N. Hawkes (UKAEA) | Thomson scattering at JET T. Carlstrom B. Bray | | Critical T _e gradient
F. Ryter, A. Manni (MPI) | | Remote participation in QH–mode (JT–60) | | RWM stabilization M. Takechi (JAERI) R. Buttery (UKAEA) | S. Pinches (MPI) | L. Lao
P. Gohil
P. West | | NTM stabilization R. Buttery (UKAEA) A. Isayama (JAERI) | O. Sauter (CRPP)
M. Maraschek (MPI) | RWM at JET
R. La Haye, H. Reimerdes | | Beta scaling of confinemen D. McDonald (UKAEA) | , | AT and hybrid scenario JT-60U
M. Wade
T. Luce | | Hybrid scenarios
A.C.C. Sips | E. Joffrin (CEA-Cadarache) | M. Murakami | | EHO identification and QH- | -mode | Confinement studies (ANU) T. Luce | | F. Nave (JET)
Y. Sakamoto (JAERI) | H. Urano (JAERI) | Hybrid scenarios (ASDEX Upgrade) M. Wade | | Disruption mitigation D. Howell (UKAEA) | | Boundary physics (ASDEX Upgrade) | | Edge stochastization P. Thomas, M. Becoulet, P. E. Nardon, F. Dubois (CEA J. Harris (ANU, Australia) K-H. Finken, M. Lehmen (1 N. Nishino (Hiroshima Uni | TEXTOR) | M. Groth Error field harmonics (JET) T. Scoville | | Error field effects | | DIII-D | D. Howell (UKAEA) R. Giannella (CEA-Cadarache) D. Mazon (JET) ## DIII-D HAD A SUCCESSFUL YEAR: RESEARCH HIGHLIGHTS IN 2004 - Feedback stabilization of the RWM achieved in low rotation plasmas using internal control coils - First demonstration of resistive wall mode stabilization with new high-bandwidth (audio) amplifiers - Pre-emptive electron cyclotron current drive avoids neoclassical tearing modes, allowing higher beta - Active feedback control of the q-profile, using real-time equilibrium reconstruction with motional Stark effect data - Modulated heating experiments find no evidence of a critical temperature gradient in electron thermal transport. - Comprehensive set of turbulence diagnostics covers the full range of transport-relevant wavenumbers (0-40 cm⁻¹) Geodesic Acoustic Mode Observed in Turbulent \tilde{v}_{Ω} Field (Upgrade BES) # RESEARCH HIGHLIGHTS IN 2004 (Continued) - Used localized current drive to show that the m/n = 3/2 tearing mode regulates central current profile in "hybrid" plasmas. - Core localized "Sea of Alfvén Eigenmodes" identified in weakly reversed shear plasmas with ITER-relevant conditions - ELMs suppressed in plasmas with ITER shape and aspect ratio, using n=3 resonant magnetic perturbations. - m/n = 3/2 neoclassical tearing mode onset β shown to scale with ρ_i^* , implying instability for ITER baseline scenario. - 100% noninductively driven plasmas with good current drive alignment and $\beta_N \le$ 3.5, for up to one current relaxation time Carbon 13 migration experiments show poloidal flow of hydrocarbons and deposition near the inner strike point Edge profile measurements show that QH-mode plasmas lie at the current driven limit for peeling/ballooning modes • Stationary ($t_{dur} > 9 \tau_R$) high performance discharges achieved that scale favorably to ITER ### **KEY PLASMA CONTROL TOOLS WILL BE AVAILABLE IN FY06** ### **Key Hardware Element** ### Long-pulse EC systems | | Prese | nt | Plan | | |----------|-------|--|-------|--| | LP
SP | 3 | $\displaystyle\mathop{\Rightarrow}\limits_{\Rightarrow}$ | 6 ⇒ 8 | | ### **Physics/Control** - $J(\rho)$ control - $P(\rho)$, transport studies - NTM stabilization #### **Counter NBI** #### Internal coil High bandwidth actuators first phase completed ### FW system operation − ABB ⇒ EIMAC tube - Transport - RWM (low rotation) - Fast ion physics - MSE for E_r - n_e control in DND and SND, ITER δ - Pedestal physics over range of v* - RWM feedback - Stochastic edge - J (ρ ~0) and P(ρ) control - β_e↑ for improved current drive efficiency # DIII-D MISSION: TO ESTABLISH THE SCIENTIFIC BASIS FOR THE OPTIMIZATION OF THE TOKAMAK APPROACH TO FUSION ENERGY PRODUCTION ## **Program objectives:** - Advance the fundamental science understanding of fusion plasmas - Enable the success of ITER by providing solutions to key issues - Enrich the ITER physics program through development and characterization of advanced scenarios - Develop the physics basis for high performance, steady-state operation in ITER (and beyond) # TRANSPORT AND CONFINEMENT: NEW TOOLS AND DIAGNOSTICS AVAILABLE IN FY2006 - Co plus counter neutral beam injection (balanced up to 10 MW) - Allows direct control of toroidal rotation, radial electric field and E×B shear - Longer pulse, higher power EC system allows T_e and j-profile control for transport studies - New computer cluster - Will allow much better throughput for computationally intensive codes such as GYRO - Essential for effective theory-experiment comparison of turbulence results - Improved turbulence diagnostics - Turbulent density field (0.1 $\leq k_{\perp} \rho_s \leq 10$) - Turbulent velocity field (0.1 \leq k $\mid \rho_s \leq$ 0.3) - Improved turbulence analysis techniques - Energy flows in k-space from BES two-field measurements - Local turbulent particle transport measurements in core and edge # DIII-D TRANSPORT AND CONFINEMENT PHYSICS PLAN FOR FY 06-07 #### Turbulence characterization - Characterize turbulence over a wide range of spatial scales and compare with gyrokinetic code (GYRO) predictions - Zonal flow studies using upgraded BES ### Electron thermal transport - Investigate link between short wavelength turbulence and electron transport - Study critical gradient effects using modulated ECH #### Transport barriers - Explore link between E×B shear and long wavelength turbulence - Differentiate between Shafranov shift and E×B effects on barrier formation #### Momentum transport - Separate heat and angular momentum input - Determine mechanism that allows rotation without momentum input # TOOLS ARE NOW IN PLACE FOR A CONCERTED EFFORT ON CHARACTERIZING TRANSPORT AT ALL SPATIAL SCALES Turbulence diagnostics now cover all relevant spatial scales Allows simultaneous measurement of fluctuations at different scale lengths and comparison with theory **Diagnostics:** - FIR, reflectometer, microwave backscattering (UCLA) - BES (U. Wisconsin) - Phase constrast imaging (MIT) TTF initiative ### DIII-D STABILITY PHYSICS RESOURCES AND PLAN ELEMENTS #### Resources - Non-axisymmetric coils - Fast ion profile diagnostic (proposed) - Co-, counter-, and balanced NBI - Long-pulse ECCD - Fast camera for disruption studies - Fast ion mode diagnostics #### Plan - Characterize fast particle physics - **★** Measure fast ion distribution - **★** Alfvén eigenmodes: characterize and validate models #### Nonlinear MHD - **★** Develop physics understanding of sawteeth, interchange, and resistive MHD - ★ Study 3D equilibrium effects - Disruption mitigation and characterization - NTM stabilization - RWM stabilization at low rotation in ITER/AT section # NEW DIAGNOSTICS ALLOW DETAILED STUDIES OF FAST ION DRIVEN INSTABILITIES - Contributing diagnostics: - FIR scattering, CO₂ interferometer, BES, reflectometer, phase contrast imaging, rf loop - Proposed - D_{α} fast ion profile (UC Irvine, PhD thesis) - Expanded BES ### DIII-D HEATING AND CURRENT DRIVE PHYSICS PLAN FOR FY06-07 #### Resources - Long pulse ECCD with increased power - Co-, counter-, and balanced NBI - Improved FW system - Improved q profile and E_r measurement (MSE upgrade) - Fast ion profile measurement #### Plan - FWCD - **★** Test models of fast ion damping, electron absorption, and current drive - ★ Apply to Advanced Tokamak plasmas - ECCD - **★** Continue to validate linear and quasi-linear codes - Bootstrap current - **★** Develop f_{BS} ≈ 1 plasmas with balanced NBI - NBCD - **★** Test models using co-, counter-, and balanced NBI capability # RESTART OF THE DIII-D FAST WAVE SYSTEM HAS PROGRESSED WELL WITH 2.7 MW COUPLED TO AN L-MODE PLASMA — Collaborative effort of GA, ORNL, and PPPL — - GA: Operations support - ORNL: Transmission line and antennae - PPPL: Power systems and transmitters | | <u>0°</u> | <u>180°</u> | 285 ° | |---------------------------|-----------|-------------|--------------| | f (MHz) | 118 | 115 | 60 | | P _{FW} (MW) | 0.87 | 0.97 | 1.18 | | P _{coupled} (MW) | 0.76 | 0.84 | 1.11 | - Total FW power = 3.0 MW - Total coupled power = 2.7 MW - Transmitter-limited - Operated in both co- and countercurrent phasings (milestone) - Initial studies indicate less parasitic absorption by beam ions at 117 MHz than 60 MHz - Not expected from code predictions - ★ Good news for FWCD in AT plasmas ### **DIII-D BOUNDARY PHYSICS PLAN FOR FY06-07** #### Resources - SN and DN pumped divertor at ITER-like triangularity - Allows operation over wide range in pedestal collisionality (0.01 < v_{\star} < 3) - Improved diagnostic set: Quartz microbalance, probes, cameras - Codes: UEDGE, BOUT, kinetic BOUT, DIVIMP, OEDGE, DEGAS-2 #### Plan - Power and particle control - **★** Understand particle control for SND → DND over range of edge collisionality - **★** Explore radiative divertor solutions for high performance scenarios ### — SOL dynamics - ★ Test BOUT simulations of radial transport in SOL - ★ Characterize heat and particle flow during ELMs, validate models - **★** Divertor and SOL response in ELM suppressed regimes - Understand flow of particles in SOL/divertor - **★** Parallel flow, cross-field diffusion, and drifts - **★** Carbon migration and co-deposition # DIII-D MISSION: TO ESTABLISH THE SCIENTIFIC BASIS FOR THE OPTIMIZATION OF THE TOKAMAK APPROACH TO FUSION ENERGY PRODUCTION ## **Program objectives:** - Advance the fundamental science understanding of fusion plasmas - Enable the success of ITER by providing solutions to key issues - Enrich the ITER physics program through development and characterization of advanced scenarios - Develop the physics basis for high performance, steady-state operation in ITER (and beyond) # DIII-D RESEARCH PROGRAM WILL CONTINUE TO PROVIDE TIMELY INFORMATION ON KEY ISSUES OF ITER DESIGN AND OPERATION - Enable the success of ITER by providing solutions to key issues - H-mode pedestal understanding and control - **★** Physics determining pedestal height - ★ ELM mitigation: QH-mode, stochastic edge - NTM stabilization - Physics of impurity and tritium mass transport - Disruption characterization and mitigation - Develop core transport models to validate performance projection and guide operation - Fast ion physics and fast-ion driven instabilities - Reduction of heat flux to the divertor - Diagnostic development - Enrich the ITER physics program through development and characterization of advanced scenarios - Develop long pulse, high performance discharges for ITER - RWM stabilization - Validate models of ECCD and FWCD # DIII-D RESEARCHERS ARE STRONGLY ENGAGED IN INTERNATIONAL TOKAMAK PHYSICS ACTIVITY (ITPA) ### — 35 team members, 3 international chairs/co-chairs, 8 US leaders/co-leaders — | Coordination Committee | | |-------------------------|-----------| | Coordination Committee | Oktay | | Erol Oktay | OFES | | Ned Sauthoff | PPPL | | Ron Stambaugh | GA | | Transport Physics (TP) | Delten | | . , , | Bolton | | Ed Doyle | UCLA | | Ed Synakowski | PPPL | | John Rice | MIT | | John Kinsey | Lehigh | | Punit Gohil | GA | | Dave Mikkelsen-Stell. | PPPL | | Michael Kotschenreuther | Texas | | Catherine Fiore | MIT | | Larry Baylor | ORNL | | Wendell Horton | Texas | | Chuck Greenfield | GA | | T.S. Hahm | PPPL | | Bill Nevins | LLNL | | Martin Peng | PPPL/ORNL | | Ron Waltz | GA | | Jim Callen | PPPL/ORNL | | Pedestal & Edge Physics | | | (PEP) Tony Leonard | GA | | Amanda Hubbard | MIT | | Parvez Guzdar | Maryland | | Tom Rognlien | LLNL | | Mickey Wade | ORNL | | Xuegagio Xu | LLNL | | Phil Snyder | GA | | Rich Groebner | | | Rip Perkins | PPPL | | Tom Osborne | GA | | Jim Drake | Maryland | | Ben Leblanc | PPPL | | Steady State Opseartions (SSO) | Oktay | |--------------------------------|-------------| | Tim Luce | GA | | Paul Bonoli | MIT | | Ron Prater | GA | | Chuck Kessel | PPPL | | Masanori Murakami | ORNL | | Randy Wilson | PPPL | | Mike Zarnstorff | PPPL | | Pete Politzer | GA | | Joel Hosea | ORNL | | Cary Forest | Wisconsin U | | MHD, Disruption and | Dagazian | |------------------------|-----------| | Control (MDC) | J | | Ted Strait | GA | | William Heibrink | UCI | | Robert Granetz | MIT | | Jon Menard | PPPL | | Gerry Navratil | Columbia | | Ed Lazarus-Stellarator | ORNL | | Chris Hegna | Wisconsin | | Eric Fredrickson | PPPL | | John Wesley | GA | | Steve Jardin | PPPL | | Boris Breizman | Texas | | Raffi Nazikian | PPPL | | Doug Darrow | PPPL | | Nicolai Gorelenko | PPPL | | Steve Sabbagh | Columbia | | Confinement, Database, and Modeling (CDBM) | Eckstrand | |--|-----------| | Wayne Houlberg | ORNL | | Jim DeBoo | GA | | Stan Kaye | PPPL | | Joe Snipes | MIT | | Robert Budny | PPPL | | Tom Casper | r LLNI | | Craig Petty | / GA | | Lynda Lodestro | LLNL | | Glenn Bateman | Lehigh | | Dale Meade | PPPL | | Arnold Kritz | : Lehigh | | Martin Greenwald | MIT | | Divertor Physics & Scrape-
off-layer (DSOL) | Finfgeld | |--|-----------| | Bruce Lipschultz | MIT | | Peter Stangeby | LLNL/GA | | Dennis Whyte | Wisconsin | | Sergei Krasheninnikov | UCSD | | Max Fenstermacher | r LLNL | | Rajesh Maingi | ORNL | | Ali Mahdav | i GA | | Daren Stotler | PPPL | | John Hogan | ORNL | | Gary Porter | LLNL | | Charles Skinner | PPPL | | Henry Kugel | PPPL | | Jim Strachan | | | Mathias Groth | LLNL | | Steve Lisgo | U Toronto | | Diagnostics | | Markevich | | |-------------|------------|-----------|-----------| | Dave | Johnson | | PPPL | | Rejea | n Boivin | | GA | | Tony | Peebles | | UCLA | | Georg | e McKee | | Wisconsin | | Glenn | Wurden | | LANL | | | Don Hillis | | ORNL | | R | ay Fisher | | GA | | K | en Young | | PPPL | | | Jim Terry | | MIT | - 1. The first five persons in each group are the core members - 2. The first person in each group is the U.S. Leader - 3. The second person is the U.S. deputy leader - 4. The membership is open to all members of the U.S. community - 5. Everyone on the list will receive communication on ITPA and be able to contribute to it. # UNDERSTANDING AND CONTROLLING THE H-MODE PEDESTAL IS A PRIMARY FOCUS OF THE DIII-D PROGRAM #### Develop predictive understanding - Test stability predictions (linear and nonlinear ELITE, BOUT, NIMROD) - Develop and test transport theories (GLF23, kinetic BOUT, NIMROD) - Make comprehensive pedestal turbulence measurements ### Develop method for controlling ELMs - Utilize stochastic edge to suppress ELMs - Develop and characterize ELM-free regimes with good confinement (QH or VH-modes) #### Resources - Counter NBI - High δ pumping - BES upgrade, Li beam, expanded MSE - Fast framing camera - Non-axisymmetic coils # ELMs SUPPRESSED FOR MORE THAN 2.5 s AT ITER RELEVANT COLLISIONALITY USING n=3 MAGNETIC PERTURBATION - Clear evidence for particle transport induced by n=3 perturbation - H–mode pedestal maintained with $H_{89P} \approx 2$ - Beamline reversal will allow study of connection with QH-mode # NTM STABILIZATION HAS BEEN DEMONSTRATED - MAIN ISSUE NOW IS THE POWER REQUIRED FOR STABILIZATION IN ITER - DIII-D experiments and others have shown that ECCD can be used to stabilize 3/2 and 2/1 NTMS - 30 B (n=1) (G) 20 β (n=1) (G) 10 (G • ... but, effectiveness is limited due to continuous current drive - Beamline rotation allows operation with sufficiently low rotation frequency for testing of ECCD modulation (< 5kHz) - Steerable launchers (PPPL) will allow testing of alignment requirements # DIII-D HAS AN EXTENSIVE SET OF TOOLS FOR STUDYING CARBON MIGRATION AND TRITIUM RETENTION #### Resources - DiMES, porous plug injector - Toroidally symmetric gas injection - Quartz microbalance detectors - Fast framing cameras to measure initial flow pattern - Off-site nuclear surface analysis by collaborators #### Plan - Study erosion/deposition issues via DiMES (reconfigured for new divertor) - Midplane material exposive system will be added - Investigate carbon migration through detailed characterization and modeling of ¹³CH₄ injection experiments - Off-site oxygen bake to determine ability to recover hydrogen isotopes # EXPERIMENTS INIDICATE PREFERENTIAL DEPOSITION OF ¹³C AT INNER DIVERTOR; NEW DIVERTOR CONFIGURATION ALLOWS DIRECT ACCESS TO THIS REGION - Measurements indicate flow of ¹³C from injection location to inner divertor leg - Modeling suggests M ~ 0.5 in SOL - New divertor allows direct access to inner divertor - Quartz microbalance detectors - Spectroscopic views from under baffle # DIII-D RESEARCH PROGRAM WILL CONTINUE TO PROVIDE TIMELY INFORMATION ON KEY ISSUES OF ITER DESIGN AND OPERATION - Enable the success of ITER by providing solutions to key issues - H-mode pedestal understanding and control - **★** Physics determining pedestal height - ★ ELM mitigation: QH-mode, stochastic edge - NTM stabilization - Physics of impurity and tritium mass transport - Disruption characterization and mitigation - Develop core transport models to validate performance projection and guide operation - Fast ion physics and fast-ion driven instabilities - Reduction of heat flux to the divertor - Diagnostic development - Enrich the ITER physics program through development and characterization of advanced scenarios - Develop long pulse, high performance discharges for ITER - RWM stabilization - Validate models of ECCD and FWCD # ADVANCED INDUCTIVE AND HYBRID SCENARIOS DEVELOPED ON DIII-D OFFER THE POTENTIAL OF A SIGNIFICANTLY ENHANCED RESEARCH PROGRAM ON ITER - Advanced inductive: $q_{95} = 3.2$, $\beta_N = 2.8$, $H_{98VS} = 1.5$ - Potential for ignition sustained for >30 minutes - Hybrid: $q_{95} = 4.4$, $\beta_N = 2.7$, $H_{98ys} = 1.6$ - Maximum neutron fluence (Q ≈ 10 for >1 hour) ## Performance at or above ITER baseline maintained in stationary conditions ### Projections of DIII-D data suggests expanded research opportunites in ITER # PROJECTIONS OF ADVANCED INDUCTIVE SCENARIO INDICATE FUSION POWER ENHANCEMENT AND IGNITION ARE POSSIBLE # **Projection to ITER** $$eta_N = 2.8$$ $q_{95} = 3.2$ $n/n_G = 0.85$ $B = 5.3 \ T$ $I = 13.9 \ MA$ | | <u>H</u> | P _{fus}
(MW) | P _{aux}
(MW) | Q _{fus} | |-------------|-----------|--------------------------|--------------------------|------------------| | ITER89P | 2.4 | 780 | 60 | 12.9 | | IPB98y2 | 1.47 | 740 | 18.5 | 39 | | DS03 | 1.25 | 700 | 0 | ∞ | | | (1.63)* | | | | | | *DIII–D \ | /alue | | | Flattop time = 2300 s > 30 min # PROJECTION OF HYBRID SCENARIO INDICATE POSSIBILITY OF Q = 10 SUSTAINED FOR >1 HOUR ### **Projection to ITER** $$\beta_N = 2.7$$ $q_{95} = 4.4$ $n/n_G = 0.85$ $B = 5.3 T$ $I = 10.8 MA$ | | <u>H</u> | P _{fus} | P _{aux}
(MW) | Q _{fus} | |---------|----------|------------------|--------------------------|------------------| | ITER89P | 2.75 | 440 | 49 | 9.0 | | IPB98y2 | 1.59 | 440 | 49 | 9.0 | | DS03 | 1.78 | 370 | 0 | ∞ | | | (1.81)* | | | | Flattop Time = 3900 s > 1 hour *DIII-D actual value # HYBRID SCENARIO RESEARCH ACTIVITIES WILL FOCUS ON KEY PHYSICS ISSUES FOR EXTRAPOLATION TO ITER ### Energy transport - Non-dimensional scaling studies - $T_e = T_i$ - Low rotation - Turbulence characterization ### Current transport - Identify mechanism for $q_0 > 1$ in stationary conditions - **★** MHD-induced flux transport - **★** Fast ion transport - Develop methodology for extrapolating mechanism to ITER ### Boundary - Develop a compatible edge/divertor solution - **★** Stochastic edge - * Radiative divertor # DIII-D MISSION: TO ESTABLISH THE SCIENTIFIC BASIS FOR THE OPTIMIZATION OF THE TOKAMAK APPROACH TO FUSION ENERGY PRODUCTION ## **Program objectives:** - Advance the fundamental science understanding of fusion plasmas - Enable the success of ITER by providing solutions to key issues - Enrich the ITER physics program through development and characterization of advanced scenarios - Develop the physics basis for high performance, steady-state operation in ITER (and beyond) # THE FOCUS OF THE DIII-D PROGRAM IS THE ADVANCED TOKAMAK — REALIZING THE ULTIMATE POTENTIAL OF THE TOKAMAK ### **Measures of progress** - Increase projected fusion power by factor of 4 - Beyond already achieved normalized conditions equivalent to ITER steady-state scenario - Increase advanced tokamak duration by up to a factor of 5 - Reduce driven current by factor of 4 - Approach fully bootstrap driven conditions - $J(\rho)$ control $\rightarrow P(\rho)$ control # EXISTENCE PROOF OF HIGH q_{min} STEADY-STATE SCENARIO HAS BEEN OBTAINED ON THE TRANSPORT TIME SCALE - Pressure at or above the no-wall pressure limit $(\beta_N \ge 4 \ \ell_i)$ for high fusion power - Elevated q_{min} (>1.5) for enhanced bootstrap current (f_{BS} ~ 0.6) - Reduced current (q₉₅ ~ 5) to minimize noninductive current requirements Also established on JT-60U # SIMULATIONS BENCHMARKED BY PRESENT EXPERIMENT INDICATE STEADY-STATE OPERATION FOR >5 s SHOULD BE POSSIBLE Simulations indicate additional ECCD and FWCD with less NBCD should lead to better current profile alignment - Simulation consistent with planned upgrades - Improved J(ρ) measurement with new MSE system will facilitate optimization # RWM STABILIZATION ALLOWS SUSTAINED OPERATION AT β_N VALUES NECESSARY FOR FULLY NON-INDUCTIVE OPERATION ($\beta_N >> \beta_N^{no-wall}$) - C-coil and I-coil used for simultaneous feedback control of error fields and RWM - $\beta_N \approx 4$, $\beta_T > 6\%$ with $q_{min} > 2$ - High δ shape - Good for stability - Not for n_e control — New divertor will allow better density control in high δ divertor # COUNTER BEAMLINE WILL ALLOW EXPLORATION OF HIGH β REGIMES AT BOTH LOW AND HIGH ROTATION - Test theories of RWM stabilization and dissipation with $0 \le \Omega_{\varphi}/\Omega_{crit} \le 1.5$ - Allows test of RWM feedback control under realistic reactor conditions - Advanced tokamak can proceed independent of RWM feedback work # NEAR-TERM ADVANCED TOKAMAK PROGRAM WILL FOCUS ON IMPROVING CURRENT PROFILE ALIGNMENT AND DEVELOPING PROFILE CONTROL TOOLS - Improved current profile alignment - Increased shaping for higher β_N - Improved density control for higher current drive efficiency - Current profile control - Develop tools and algorithms for controlling J(p) - Pressure profile control - Evaluate methods for broadening the pressure profile - RWM stabilization - Continue to improve feedback algorithms for both rotationally stabilized and low rotation targets - Integration and optimization # DIII—D IS UNIQUELY POSITIONED TO ADVANCE THE SCIENCE OF FUSION ENERGY AS WE PREPARE FOR ITER AND BEYOND #### **Machine Versatility** #### **State-of-the-Art Tools** ### **Comprehensive Diagnostics** # A unique opportunity to make significant advances towards: - A predictive understanding of fusion plasmas - Success of ITER in its baseline mission - An enriched ITER research program - Realizing the potential of steady-state tokamak operation